iotoctok	PROJECT: QUAKER M700 FIXED/AWNING/FIXED	BY: TAD DATE: 09/29/202		
UICEICER	PROJECT NO.: Q3930.01-122-34	CKD: ARK	SHEET: 1 OF 22	

Window Installation Analysis

QUAKER WINDOWS & DOORS M700 Awning-Fixed-Awning M700 Awn-Fix & Fix-Awn

Report Q3930.01-122-34 M700

Rendered to:

Quaker Windows & Doors P.O. Box 128 504 Highway 63 South Freeburg, MO 65035

Prepared by:

Tanya A. Dolby, P.E. Adam Kunkel

Architectural Testing, Inc. 130 Derry Court York, Pennsylvania 17406 (717) 764-7700

October 5, 2023

Tanya A. Dolby, P.E. Manager, Engineering Services Adam Kunkel Project Engineer

Scope

Architectural Testing, Inc., an Intertek company, was contracted by Quaker Window & Doors to perform installation analysis for M700 Fixed/Awning/Fixed Windows on test report L5048.01-801-44-R5.

The analyses performed satisfy the methods and requirements of the following:

Florida Building Code, Building, 8th Edition (2023). International Code Council, 2023.

ANSI/AWC NDS-2018 National Design Specification (NDS) for Wood Construction with 2015 Supplement. American Wood Council, 2018.

ADM1-2020 Aluminum Design Manual. The Aluminum Association, Inc., 2020.

AISI S100-16(2020)w/S2-20 North American Specification for the Design of Cold-Formed Steel Structural Members, 2016 Edition(Reaffirmed 2020). American Iron and Steel Institute, 2020.

ICC-ES Report ESR-1976 ITW Buildex TEKS Self-Drilling Fasteners. ICC Evaluation Service. 07/2023.

NOA 21-0628.20 *Hilti Kwik-Con+ Concrete and Masonry Screw Anchor.* Miami-Dade County Product Control Section. 08/19/2021.

AAMA TIR-A9-14 *Design Guide for Metal Cladding Fasteners, Includes 2020 Addendum.* American Architectural Manufacturers Association, 2014.

The calculations presented herein are for the integrity of the window installations based on wind load only. The weather tightness of the installation is not addressed by this report. The air/water/structural performance of the individual products is not proven by this report.

Certification of Independence

In accordance with Rule 61G20-3 Florida Administrative Code, Architectural Testing, Inc. hereby certifies the following:

- Architectural Testing does not have, nor does it intend to acquire or will it acquire, a financial interest in any company manufacturing or distributing products tested or labeled by the agency.
- Architectural Testing is not owned, operated or controlled by any company manufacturing or distributing products it tests or labels.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have nor will acquire, a financial interest in any company manufacturing or distributing products for which the reports are being issued.
- Tanya A. Dolby, P.E. and Adam R. Kunkel do not have, nor will acquire, a financial interest in any other entity involved in the approval process of the product.

<u>Analyses</u>

Summary of Test Results

The following table summarizes the M700 Fixed over Awning with Roto-Operator over Fixed Window products and their corresponding performance levels which have been established by testing or product certification.

Table 1 Summary of Test Results

Series/Model	Test Report Number	Product Certification	Size (W x H)	Performance
M700 Fixed over Awning with Roto-Operator over Fixed Window	L5048.01-801-44 (Revision 5, 12/01/22)	NI015457.03-R2	60" x 144"	+/- 70 psf

Testing documented in Table 1 was conducted by the Architectural Testing laboratory in Plano, Texas (Florida Department of Business & Professional Regulation Test Lab No. TST1910, IAS Accredited Laboratory TL-331).

As-Tested Installation Analysis

For Large Missile Impact and Cyclic testing, the test specimen was secured to a 2x Spruce-Pine-Fir wood buck with #12 x 2-1/2" wood screws located as shown in Table 2 for each anchor method. The as-tested installation methods are evaluated on pages 8 - 11 and the established design capacities are summarized in Table 2.

Test	Connection	Capacity
Unit 1, 2, 3 Nailing Fin	Nailing Fin with #12 x 2-1/2" Wood Screws Placed 3" from each corner and 14" on center at head and sill, 3" from each corner and 12" on center at jambs.	128 lb
Unit 4 Receptor	Screws attached through receptor spaced 3" from each end and 15" on center at head and sill. Receptor jambs are attached with screws 3" from each end and 13" on center.	193 lb
Unit 5 Trim Clip	Screws attached through 1-1/4" x 1-1/2" aluminum (Part #M15267) at interior of frame into buck, 2" from each end and 15" O.C. at frame head and sill, 13" O.C. at frame jambs.	114 lb

Table 2 As-Tested Anchorage Design Capacities

The capacities presented in Table 2 will be used to prove acceptable alternate anchors and substrates for the windows.

Alternate Anchorages

Calculations on pages 12 through 17 determine the design capacity of alternate anchorages for the windows. The alternate anchorage capacities are summarized in Table 3.

Table 3 Alt	ernate Anch	norage Ca	pacities
-------------	-------------	-----------	----------

Installation	Connection	Capacity	Comments
Nailing Fin	#12-14 TEKS Screw		1. Limited by pull-out
to Steel	connecting Receptor to	131 lb	Full penetration +3 threads
	Light Gauge Steel Framing		3. Min 18 gauge 33 KSI steel
	#12-14 TEKS Scrow		1. Limited by bending
Receptor to	#12-14 TERS Screw	200 lh	Full penetration +3 threads
Steel	Light Gauge Steel Framing	209 10	3. 1/4" max shim space
			Min 18 gauge 33 KSI steel
		183 lb	1. Limited by bending
	1/1" Hilti Kwik Cont Anchor		2. 1" min embedment
Receptor to	connecting Receptor to Concrete		3. 2-1/2" min edge distance
Concrete			4. 2" min spacing
			5. 1/4" max shim space
			6. Min f' _c = 3,000 psi concrete
			1. Limited by bending
	1/1" Hilti Kwik Cont Anchor		2. 1" min embedment
Receptor to	1/4 Hitt KWIK-COII+ Altchoi	102 lh	3. 2-1/2" min edge distance
CMU		183 10	4. 3" min spacing
			5. 1/4" max shim space
			6. Min ASTM C90 masonry

Table 3 Alternate Anchorage Capacities (Cont.)

Installation	Connection	Capacity	Comments
Trim Clip to Steel	 #12-14 TEKS Screw connecting Trim Clip to Light Gauge Steel Framing, #12 TEK Screw connecting Trim Clip to Window 	114 lb	 Limited by connection to window frame Full penetration +3 threads Min 18 gauge 33 KSI steel
Trim Clip to Concrete	1/4" Hilti Kwik-Con+ Anchor connecting Trim Clip to Concrete, #12 TEK Screw connecting Trim Clip to Window	114 lb	 Limited by connection to window frame 1" min embedment 2-1/2" min edge distance 2" min spacing Min f'_c = 3,000 psi concrete
Trim Clip to CMU	1/4" Hilti Kwik-Con+ Anchor connecting Trim Clip to CMU, #12 TEK Screw connecting Trim Clip to Window	114 lb	 Limited by connection to window frame 1" min embedment 2-1/2" min edge distance 3" min spacing Min ASTM C90 masonry

SHEET: 7 OF 22

CKD: ARK

Calculated capacities of Receptor to Concrete/CMU installation are within 5% of tested capacity. Other alternate anchorage conditions have anchorage capacities which are comparable to or exceed the as-tested anchorage capacities. The as tested spacings for each anchoring system will apply to alternate substrates.

Unit 5 with Trim and Clip was tested with anchors located 2" from the corners. Locating anchors at 3" from the corners in lieu of 2" is accepted. All anchorage may be installed 3" from corners and per the spacing indicated on the Installation Instructions. Maximum shim space between the window frame and surrounding substrate is 1/4" for all conditions. Anchors must be fully shimmed and supported.

Reference Drawings

The reference drawings are the basis of the analysis presented herein and may not reflect the requirements established by this analysis.

- M700 Impact Awn-Fix & Fix-Awning Installation Instructions. Quaker Windows and Doors. 10/05/23. (8 pages)
- *M700 Fixed-Awning-Fixed Installation Instructions.* Quaker Windows and Doors. 10/05/23. (8 pages)

CKD: ARK SHEET: 8 OF 22

As-Tested Installation – Nailing Fin to Wood Blocking

PROJECT NO.: Q3930.01-122-34

#12 x 2-1/2" Wood Screw (Non-Countersunk)

1-1/2" Minimum Penetration

1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.42 Minimum Spruce-Pine-Fir 2x Wood Blocking

 $\label{eq:Withdrawal of #12 Wood Screw} \\ W' = 2,850(G^2)(D)(C_d)(C_m^2)(C_t)(C_{eg})(C_{tn})(L) \\ W' = 2,850(0.42)^2(0.216'')(1.6)(1.0)^2(1.0)(1.0)(1.0)(1.5'') \\ W' = 128 \ \text{lb} \\ \end{array}$

Pull-Over of #12 Wood Screw

$$\begin{split} P_{nov} &= C_{pov} t_1 F_{tu1} (D_{ws}\text{-}D_h) / 3.0 \\ P_{nov} &= 1.0 (0.0625'') (30,000 \text{ psi}) (0.438'' - 0.228'') / 3.0 \\ P_{nov} &= 131 \text{ lb} \end{split}$$

Capacity of Connection is 128 lb

As-Tested Installation – Receptor to Wood Blocking

- #12 x 2-1/2" Wood Screw (Non-Countersunk)
- 1-1/2" Minimum Penetration
- 1/16" thick 6063-T6 Aluminum Nailing Fin

G = 0.42 Minimum Spruce-Pine-Fir 2x Wood Blocking

1/4" Maximum Shim Space

Z' = 193 lb

Bending of #12 Wood Screw

 $S = \pi d^3/32 = \pi (0.216'')^3/32 = 0.001 \text{ in}^3$ $F_b = (1.3)(0.6F_y) = (1.3)(0.6)(80,000 \text{ psi}) = 62,400 \text{ psi} (1.3 \text{ factor for weak axis bending})$ $F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending})$ $V = 2SF_b/L = (2)(0.001 \text{ in}^3)(62,400 \text{ psi})/0.375'' = 329 \text{ lb}$

Capacity of Connection is 193 lb

intoctok	PROJECT: QUAKER M700 FIXED/AWNING/FIXED	BY: TAD	DATE: 09/29/2023
UICERCER	PROJECT NO.: Q3930.01-122-34	CKD: ARK	SHEET: 9 OF 22

Lateral Design Strength of Wood Connections

ANSI / AF&PA NDS-2018

Data

Material	=	SPF				
G	=	0.42				
θ	=	90	<= (Angle of load to grain)			
F_{e}	=	3,350 psi	(Table 12.3.2)			
Thickness	=	1.500 in.				

Side Member

Lateral Design Values, Z

Material	=	6063 Te	Aluminum
G	=	N/A	
θ	=	0	<= (Angle of load to grain)
F_{es}	=	37,500 psi	
Thickness	=	0.063 in.	

Calculations

Lateral	Lateral Bearing Factors			
	D	=	0.171 in.	
	e _m	=	1.500 in.	
	$K_{\boldsymbol{\theta}}$	=	1.25	(Tab
	$K_{\rm D}$	=	2.21	(Tab
	R_e	=	0.089	(Tab
	R_{t}	=	24.00	(Tab
	k_1	=	0.8662	(Tab
	k ₂	=	0.5564	(Tab
	k_3	=	15.53	(Tab

Yield Mode	R _d
۱ _m , ۱ _s	2.21
Ξ	2.21
III _m , III _s , IV	2.21

	Mode I _m
	Mode I _s
(Table 12.3.1B)	Mode II
(Table 12.3.1B)	Mode III _m
(Table 12.3.1A)	Mode III _s
(Table 12.3.1A)	Mode IV
(Table 12.3.1A)	C _D
(Table 12.3.1A)	
(Table 12.3.1A)	Fabrication/In-S
	C _M
	In service tempe
(Table 12.3.1B)	C _t
(Table 12.3.1B)	Cg

(Table 12.3.1B)

Mode I_m	=	389 lbf		(Eq 12.3-1)
Mode I _s	=	181 lbf		(Eq 12.3-2)
Mode II	=	157 lbf		(Eq 12.3-3)
Mode III _m	=	184 lbf		(Eq 12.3-4)
Mode III _s	=	120 lbf	<==== Min Value	(Eq 12.3-5)
Mode IV	=	169 lbf		(Eq 12.3-6)
C _D	=	1.6		(B.2)
١	Net S	ervice Factor		
Fabrication/In-Se	rvice	Dry/Dry		
C _M	=	1.0		(Table 11.3.3)
In service tempera	ature	T	≤100°F	
C _t	=	1.0		(Table 11.3.4)
C _g	=	1.0		(11.3.6)
C_{Δ}	=	1.0		(12.5.1)
Installed in end gr	rain?	No		
C_{eg}	=	1.00		(12.5.2)
Part of a diaphra	agm?	No		
C _{di}	=	1.0		(12.5.3)
Toe-na	iled?	No		
C _{tn}	=	1.00		(12.5.4)
Z'	=	<u>193 lbf</u>		(Table 11.3.1)

Capacity of Connection is 193 lb

As-Tested Installation – Trim and Clip to Wood Blocking

- #12 Wood Screw (Non-Countersunk)
- 1-1/2" Minimum Penetration
- 1/16" thick 6063-T6 Aluminum Trim Clip
- G = 0.42 Minimum Spruce-Pine-Fir 2x Wood Blocking (Qualifies Southern Yellow Pine)
- 1/4" Maximum Shim Space allowed

Allowable Shear of #12 Wood Screw Z' = 193 lb

 $\frac{\text{Bearing of #12 Screw}}{V_a = 2\text{DtF}_u/n_u}$ $V_a = 2(0.216")(0.0625")(30,000 \text{ psi})/3.0$ $V_a = 270 \text{ lb}$

 $\begin{array}{l} \underline{\text{Bending of \#12 Wood Screw}}\\ S = \pi d^3/32 = \pi (0.216^{"})^3/32 = 0.001 \text{ in}^3\\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(80,000 \text{ psi}) = 62,400 \text{ psi} (1.3 \text{ factor for weak axis bending})\\ F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending})\\ V = 2SF_b/L = (2)(0.001 \text{ in}^3)(62,400 \text{ psi})/0.25^{"} = 316 \text{ lb} \end{array}$

Capacity of Connection is 193 lb

As-Tested Installation – Trim Clip to Window Frame

#12-14 TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Trim Clip

1/16" thick 6063-T6 Aluminum Window Frame

Allowable Tension of #12-14 TEKS Screw V_a = 1184 lb (ESR-1976)

 $\begin{array}{l} \underline{Pull-Over \ of \ \#12-14 \ TEKS \ Screw \ in \ Trim \ Clip}} \\ P_{nov} = C_{pov} t_1 F_{tu1} (D_{ws} - D_h) / 3.0 \\ P_{nov} = 1.0 (0.0625'') (30,000 \ psi) (0.438'' - 0.228'') / 3.0 \\ P_{nov} = 131 \ lb \end{array}$

Pull-Out of #12-14 TEKS Screw in Window Frame

$$\begin{split} P_{not} &= K_s D L_e F_{ty2} / 3.0 \\ P_{not} &= 1.01 (0.216'') (0.0625'') (25,000 \text{ psi}) / 3.0 \\ P_{not} &= 114 \text{ lb} \end{split}$$

Capacity of Connection is 114 lb

Tested capacity of M2078 Interior Snap Trim (1/16" thick) determined as shown below on Q3412.01-550-44-R0. Qualified for use at the design capacity of 114 lb.

Trim&Clip	70.0	psf				
Anchor Spacing	8.0	inch				Anchor Capacity for
	Width, w	Height, h			R	Specified Spacing
Window Mark	(inch)	(inch)	w/h	gamma	(lb/inch)	(lb)
Q3412.01-550-44-R0	60.00	99.00	1.65	0.494	14.40	115

Alternate Installation – Nailing Fin to Steel Stud

#12-14 TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Nailing Fin

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

Allowable Tension of #12-14 TEKS Screw V_a = 1184 lb (ESR-1976)

 $\begin{array}{l} \underline{Pull-Over \ of \ \#12-14 \ TEKS \ Screw \ in \ Trim \ Clip}} \\ P_{nov} = C_{pov} t_1 F_{tu1} (D_{ws} \text{-} D_h) / 3.0 \\ P_{nov} = 1.0 (0.0625'') (30,000 \ psi) (0.438'' - 0.228'') / 3.0 \\ P_{nov} = 131 \ lb \end{array}$

 $\frac{\text{Pull-Out of #12-14 TEKS Screw in Steel Stud}}{P_{not} = 0.85t_c dF_{u2}/3.0}$ $P_{not} = 0.85(0.0478")(0.216")(45,000 \text{ psi})/3.0$ $P_{not} = 132 \text{ lb}$

Capacity of Connection is 131 lb

Alternate Installation – Receptor to Steel Stud

#12-14 TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Receptor

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

1/4" Maximum Shim Space

0.6875" Maximum Bending Space

Allowable Shear of #12-14 TEKS Screw V_a = 724 lb (ESR-1976)

Bearing of #12-14 TEKS Screw on Receptor $V_a = 2DtF_u/n_u$ $V_a = 2(0.216")(0.0625")(30,000 \text{ psi})/3.0$ $V_a = 270 \text{ lb}$

Bearing of #12-14 TEKS Screw on Steel Stud $V_a = 2.7DtF_u/n_u$ $V_a = 2.7(0.216'')(0.0478'')(45,000 \text{ psi})/3.0$ $V_a = 418 \text{ lb}$

 $\frac{\text{Tilting of #12-14 TEKS Screw in Steel}}{V_a = 4.2(t_2{}^3\text{D}){}^{1/2}\text{F}_{tu}/\text{n}_s}$ $V_a = 4.2(0.0478{}^3 \times 0.216){}^{1/2}(45,000 \text{ psi})/3.0$ $V_a = 306 \text{ lb}$

 $\frac{\text{Bending of #12-14 TEKS Screw}}{S = \pi d^3/32 = \pi (0.216'')^3/32 = 0.001 \text{ in}^3}$ $F_b = (1.3)(0.6F_v) = (1.3)(0.6)(92,000 \text{ psi}) = 71,760 \text{ psi} (1.3 \text{ factor for weak axis bending})$ $F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending})$ $V = 2SF_b/L = (2)(0.001 \text{ in}^3)(71,760 \text{ psi})/0.6875'' = 209 \text{ lb}$

Capacity of Connection is 209 lb

Alternate Installation – Receptor to Concrete

1/4" Hilti Kwik-Con+ Anchor

1" Minimum Embedment

2-1/2" Minimum Edge Distance

2" Minimum Spacing

1/16" thick 6063-T6 Aluminum Receptor

Minimum f'_c = 3,000 psi Concrete

1/4" Maximum Shim Space

11/16" Maximum Bending Space

Allowable Shear of 1/4" Hilti Kwik-Con+ Anchor $P_{ss}/\Omega = 379$ lb (NOA-No. 21-0628.20)

Bearing of 1/4" Hilti Kwik-Con+ in Receptor $V_a = 2DtF_u/n_u$ $V_a = 2(0.25")(0.0625")(30,000 \text{ psi})/3.0$ $V_a = 313 \text{ lb}$

 $\begin{array}{l} \underline{\text{Bending of } 1/4" \text{ Hilti Kwik-Con+}} \\ S = \pi d^3/32 = \pi (0.190")^3/32 = 0.0007 \text{ in}^3 \\ F_y = 120,000 \text{ psi per Miami Dade NOA } 20-0427.13 \\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(120,000 \text{ psi}) = 93,600 \text{ psi } (1.3 \text{ factor for rod bending}) \\ F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending}) \\ V = 2SF_b/L = (2)(0.0007 \text{ in}^3)(93,600 \text{ psi})/0.6875" = 183 \text{ lb} \end{array}$

Capacity of Connection is 183 lb, Within 5% of tested capacity of 193 lb

Alternate Installation – Receptor to CMU

1/4" Hilti Kwik-Con+ Anchor

- 1" Minimum Embedment
- 2-1/2" Minimum Edge Distance
- 3" Minimum Spacing
- 1/16" thick 6063-T6 Aluminum Receptor
- Minimum f'm = 1,500 psi ASTM C90 Concrete Masonry
- 1/4" Maximum Shim Space
- 11/16" Maximum Bending Space

Allowable Shear of 1/4" Hilti Kwik-Con+ Anchor $P_{ss}/\Omega = 251$ lb (NOA-No. 21-0628.20)

 $\frac{\text{Bearing of } 1/4" \text{ Hilti Kwik-Con+ in Receptor}}{V_a = 2\text{DtF}_u/n_u}$ $V_a = 2(0.25")(0.0625")(30,000 \text{ psi})/3.0$ $V_a = 313 \text{ lb}$

 $\begin{array}{l} \underline{\text{Bending of } 1/4" \text{ Hilti Kwik-Con+}} \\ S = \pi d^3/32 = \pi (0.190")^3/32 = 0.0007 \text{ in}^3 \\ F_y = 120,000 \text{ psi per Miami Dade NOA } 20-0427.13 \\ F_b = (1.3)(0.6F_y) = (1.3)(0.6)(120,000 \text{ psi}) = 93,600 \text{ psi} (1.3 \text{ factor for rod bending}) \\ F_b = M/S = (VL/2)/S (L/2 \text{ for guided bending}) \\ V = 2SF_b/L = (2)(0.0007 \text{ in}^3)(93,600 \text{ psi})/0.6875" = 183 \text{ lb} \end{array}$

Capacity of Connection is 183 lb Within 5% of tested capacity of 193 lb

Alternate Installation – Trim Clip to Steel Stud

#12-14 TEKS Screw

Full Penetration +3 Threads

1/16" thick 6063-T6 Aluminum Trim Clip

Minimum 18 Gauge 33 KSI Steel Stud (Qualifies thicker and stronger steel)

1/4" Maximum Shim Space

No Bending

Allowable Shear of #12-14 TEKS Screw V_a = 724 lb (ESR-1976)

Bearing of #12-14 TEKS Screw on Trim Clip $V_a = 2DtF_u/n_u$ $V_a = 2(0.216")(0.0625")(30,000 \text{ psi})/3.0$ $V_a = 270 \text{ lb}$

 $\label{eq:scalar} \begin{array}{l} \underline{\text{Bearing of \#12-14 TEKS Screw on Steel Stud}}\\ V_a = 2.7 \text{DtF}_u/n_u\\ V_a = 2.7 (0.216'') (0.0478'') (45,000 \text{ psi})/3.0\\ V_a = 418 \text{ lb} \end{array}$

Tilting of #12-14 TEKS Screw in Steel $V_a = 4.2(t_2^{3}D)^{1/2}F_{tu}/n_s$ $V_a = 4.2(0.0478^3 \times 0.216)^{1/2}(45,000 \text{ psi})/3.0$ $V_a = 306 \text{ lb}$

Capacity of Connection is 270 lb

Alternate Installation – Trim Clip to Concrete

- 1/4" Hilti Kwik-Con+ Anchor
- 1" Minimum Embedment
- 2-1/2" Minimum Edge Distance
- 2" Minimum Spacing
- 1/16" thick 6063-T6 Aluminum Trim Clip

Minimum f'_c = 3,000 psi Concrete

1/4" Maximum Shim Space

No Bending

 $\frac{\text{Allowable Shear of } 1/4" \text{ Hilti Kwik-Con+ Anchor}}{P_{ss}/\Omega = 379 \text{ lb}} (\text{NOA-No. 21-0628.20})$

 $\frac{Bearing of 1/4" Hilti Kwik-Con+ in Trim Clip}{V_a = 2DtF_u/n_u}$

 $V_a = 2(0.25")(0.0625")(30,000 \text{ psi})/3.0$ $V_a = 313 \text{ lb}$

Capacity of Connection is 313 lb

Alternate Installation – Trim Clip to CMU

1/4" Hilti Kwik-Con+ Anchor

1" Minimum Embedment

2-1/2" Minimum Edge Distance

3" Minimum Spacing

1/16" thick 6063-T6 Aluminum Trim Clip

Minimum f'm = 1,500 psi ASTM C90 Concrete Masonry

1/4" Maximum Shim Space

No Bending

Allowable Shear of 1/4" Hilti Kwik-Con+ Anchor $P_{ss}/\Omega = 251$ lb (NOA-No. 21-0628.20)

Capacity of Connection is 251 lb

Note: A #12-14 TEKS screw is used to connect the trim clip to window frame. The capacity of this connection is 114 lb as shown on page 11. This connection governs the capacity of all trim clip installation methods.

PROJECT NO.: Q3930.01-122-34

Actual Tested Anchorage Capacity

Nailfin						
Design Pressure	70.0	psf				
Anchor Spacing	14.0	inch	Head/Sill			
Anchor Spacing	12.0	inch	Jambs			Anchor Capacity for
	Width, w	Height, h	1		R	Specified Spacing
Window Mark	(inch)	(inch)	w/h	gamma	(lb/inch)	(lb)
L5048.01-801-44-R5	60.00	144.00	2.40	0.505	14.74	177
L5048.01-801-44-R5	60.00	60.00	1.00	0.420	12.25	171
Receptor						
Design Pressure	70.0	psf				
Anchor Spacing	15.0	inch	Head/Sill			
Anchor Spacing	12 0	inch	lambe			Anchor Canacity for
Anchor Spacing	13.0	IIICII	Jamus			Anchor Capacity IOI
Anchor Spacing	Width, w	Height, h	Jamus		R	Specified Spacing
Window Mark	Width, w (inch)	Height, h (inch)	w/h	gamma	R (Ib/inch)	Specified Spacing (lb)
Window Mark L5048.01-801-44-R5	Width, w (inch) 60.00	Height, h (inch) 144.00	w/h 2.40	gamma 0.505	R (Ib/inch) 14.74	Specified Spacing (Ib) 192
Window Mark L5048.01-801-44-R5 L5048.01-801-44-R5	Width, w (inch) 60.00 60.00	Height, h (inch) 144.00 60.00	w/h 2.40 1.00	gamma 0.505 0.420	R (Ib/inch) 14.74 12.25	Specified Spacing (Ib) 192 184
Window Mark L5048.01-801-44-R5 L5048.01-801-44-R5 Trim&Clip	Width, w (inch) 60.00 60.00 70.0	Height, h (inch) 144.00 60.00 psf	w/h 2.40 1.00	gamma 0.505 0.420	R (lb/inch) 14.74 12.25	Specified Spacing (Ib) 192 184
Window Mark L5048.01-801-44-R5 L5048.01-801-44-R5 Trim&Clip Anchor Spacing	Width, w (inch) 60.00 60.00 70.0 15.0	Height, h (inch) 144.00 60.00 psf inch	w/h 2.40 1.00 Head/Sill	gamma 0.505 0.420	R (lb/inch) 14.74 12.25	Specified Spacing (Ib) 192 184
Window Mark L5048.01-801-44-R5 L5048.01-801-44-R5 Trim&Clip Anchor Spacing Anchor Spacing	Width, w (inch) 60.00 60.00 70.0 15.0 13.0	Height, h (inch) 144.00 60.00 psf inch inch	w/h 2.40 1.00 Head/Sill Jambs	gamma 0.505 0.420	R (Ib/inch) 14.74 12.25	Anchor Capacity for Specified Spacing (Ib) 192 184 Anchor Capacity for
Window Mark L5048.01-801-44-R5 L5048.01-801-44-R5 Trim&Clip Anchor Spacing Anchor Spacing	Width, w (inch) 60.00 60.00 70.0 15.0 13.0 Width, w	Height, h (inch) 144.00 60.00 psf inch inch Height, h	w/h 2.40 1.00 Head/Sill Jambs	gamma 0.505 0.420	R (Ib/inch) 14.74 12.25 R	Anchor Capacity for Specified Spacing (Ib) 192 184 Anchor Capacity for Specified Spacing
Window Mark L5048.01-801-44-R5 L5048.01-801-44-R5 Trim&Clip Anchor Spacing Anchor Spacing Window Mark	Width, w (inch) 60.00 60.00 70.0 15.0 13.0 Width, w (inch)	Height, h (inch) 144.00 60.00 psf inch inch Height, h (inch)	w/h 2.40 1.00 Head/Sill Jambs	gamma 0.505 0.420 gamma	R (Ib/inch) 14.74 12.25 R (Ib/inch)	Anchor Capacity for Specified Spacing (Ib) 192 184 Anchor Capacity for Specified Spacing (Ib)
Window Mark L5048.01-801-44-R5 L5048.01-801-44-R5 Trim&Clip Anchor Spacing Anchor Spacing Window Mark L5048.01-801-44-R5	Width, w (inch) 60.00 60.00 70.0 15.0 13.0 Width, w (inch) 60.00	Height, h (inch) 144.00 60.00 psf inch inch Height, h (inch) 144.00	w/h 2.40 1.00 Head/Sill Jambs w/h 2.40	gamma 0.505 0.420 gamma 0.505	R (lb/inch) 14.74 12.25 R (lb/inch) 14.74	Anchor Capacity for Specified Spacing (Ib) 192 184 Anchor Capacity for Specified Spacing (Ib) 192

PROJECT NO.: Q3930.01-122-34

GLASS ANALYSIS

Glazing Information

Supported Edges:	Four sides simply supported
Shape:	Rectangular
Lite Width:	57.1 in.
Lite Height:	47.7 in.
Glazing Angle:	90.0 °

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (Monolithic 1/4 in.)

Single Glass Ply Properties RCSS (Heat Treatment): Min Thickness: Surface Treatment: Surface Parameters:

0.00 psi (Annealed) 0.219 in. None 7.00 [1.36e-29 in^12/lbf^7] (ASTM)

Airspace Properties

Thickness:	0.480 in.
Sealant Width:	0.236 in.
Elevation:	0.00 ft
Initial Pressure:	14.70 psi
Initial Temperatu	ire:70.0 °F

Interior Lite Properties (Laminated 1/4 in.)

Exterior Glass Ply Properties	
RCSS (Heat Treatment):	0.00 psi (Annealed)
Min Thickness:	0.115 in.
Surface Treatment:	None
Surface Parameters:	7.00 [1.36e-29 in^12/lbf^7] (ASTM)
Interlaver Properties	
Interlayer Type:	PVB
Thickness:	0.090 in.
Interior Glass Ply Properties	
RCSS (Heat Treatment):	0.00 psi (Annealed)
Min Thickness:	0.115 in.
Surface Treatment:	None
Surface Parameters:	7.00 [1.36e-29 in^12/lbf^7] (ASTM)

Load Combinations

Load Combination 1 - 70.0 psf (3.00 sec)						
Description Short Duration	Load 70.0 psf	Duration	Factor	Total 70.0 psf		

iotoctok	PROJECT: QUAKER M700 FIXED/AWNING/FIXED	BY: TAD	DATE: 09/29/2023
UICERCER	PROJECT NO.: Q3930.01-122-34	CKD: ARK	SHEET: 21 OF 22

Details

Selected standard: ASTM E1300 Extended Basic

Glazing Construction (Double Glazed Insulating Unit)

Exterior Lite Properties (1/4 in. Monolithic)

Construction: 1/4 in. (AN)

Airspace Properties

Thickness: 0.480 in.

Interior Lite Properties (1/4 in. Laminated)

Construction: 1/8 in. (AN) | 0.090 in. (PVB) | 1/8 in. (AN)

Load Resistance

Shore Baranon (S See)

Description	NFL	GTF	LSF	LR
Exterior Lite	54.0 psf	0.900	1/0.500	97.3 psf
Interior Lite	47.4 psf	0.900	1/0.500	85.4 psf

Comparisons

Scenario 1		
70.0 psf 3.00 sec <= 85.4 psf	OK	
Approximate center of glass deflection		
Exterior Lite	0.44 in.	
Interior Lite	0.57 in.	

Notes

Load resistance values are computed in accordance with ASTM E1300-16 Section 6.2 and are based on non-factored load values calculated in a manner consistent with those presented in ASTM E1300-16.

intortok	PROJECT: QUAKER M700 FIXED/AWNING/FIXED	BY: TAD	DATE: 09/29/2023
UICERCER	PROJECT NO.: Q3930.01-122-34	CKD: ARK	SHEET: 22 OF 22

Revision Log

<u>Rev. #</u>	Date	Page(s)	Revision(s)
0	09/29/23	N/A	Original report issue